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Songs of songbird species such as Bengalese finch consist of sequences of syllables. While syllables are
temporally stereotypical, syllable sequences can vary and follow complex, probabilistic transition rules. Recent
experiments and computational models suggest that a syllable is encoded in a chain network of projection
neurons in premotor nucleus HVC �proper name�. Precisely timed spikes propagate along the chain, driving
vocalization of the syllable through downstream nuclei. However, the neural basis of the probabilistic transi-
tions between the syllables is not understood. Here we propose that variable syllable sequences are generated
through spike propagations in a network in HVC in which the syllable-encoding chain networks are connected
into a branching chain pattern. The neurons mutually inhibit each other through the inhibitory HVC interneu-
rons, and are driven by external inputs from nuclei upstream of HVC. At a branching point that connects the
final group of a chain to the first groups of several chains, the spike activity selects one branch to continue the
propagation. The selection is probabilistic, and is due to the winner-take-all mechanism mediated by the
inhibition and noise. The transitions between the chains are Markovian. If the same syllable can be driven by
multiple chains, the generated syllable sequences are statistically described by partially observable Markov
models. We suggest that the syntax of birdsong syllable sequences is embedded in the connection patterns of
HVC projection neurons.
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I. INTRODUCTION

Sequence is a fundamental aspect of many animal and
human behaviors. Behavioral sequences are often variable
but not random, and can be described by some “action syn-
tax,” similar to grammar in language �1�. Although numerous
experimental and theoretical works on human and nonhuman
primates performing instructed simple serial movements
have provided some insights into the neural basis of action
sequences �2–6�, it remains unexplored how neural activity
generates complex action syntax.

The songbird is an excellent model system for studying
action sequences. Birdsong is a learned vocalization that has
many parallels with human language �7–12�. Many song-
birds sing songs with complex syntactical structures �13�.
Figure 1 shows the song of a Bengalese finch as an example.
The song consists of syllables—temporally stereotypical
bursts of sounds separated by silent intervals. There are sev-
eral distinctive syllables, which are labeled with letters on
top of the spectrogram of the song �Fig. 1�a��. The syllable
sequence can be described by a transition rule that allows a
syllable to be followed by another one chosen with some
probability from a restricted set of syllables �13–18� �Fig.
1�b��. Such a rule is rudimentarily similar to how words can
be strung together with restricted flexibility in language �19�,
and allows generation of an unlimited number of distinctive
syllable sequences.

The production of birdsong is controlled by the song sys-
tem that consists of a set of brain nuclei linked to form a
mostly feed forward excitatory pathway �20–23�, as illus-
trated in Fig. 2. The premotor nucleus HVC �proper name�

plays a key role in the song system. HVC projects to RA �the
robust nucleus of the arcopallium�. RA, in turn, projects to a
hypoglossal motor nucleus containing motor neurons inner-
vating the syrinx—the vocal organ of birds. HVC and RA are
necessary for song generation, and form a premotor pathway
in the song control system �20,21�. HVC is also a site of
sensorimotor integration: it gets auditory input from NIF �the
nucleus interfacialis of the nidopallium� �24–28�; it also gets
input from UVA �the nucleus uvaeformis�, a thalamic
nucleus �21,29–31�. HVC has a rich internal structure
�32–36�. There are at least three types of neurons: HVC�RA�
neurons, which project to RA; HVC�X� neurons, which
project to area X; and inhibitory interneurons �HVC�I� neu-
rons�, which do not project out of HVC. There are extensive
connections between these neurons �36�.

To date, most birdsong studies have been done on zebra
finch �34,37–42�, whose song consists of several repetitions
of a motif, which is a fixed sequence of a few syllables �12�.
Recordings in RA and HVC in singing zebra finches revealed
that neurons in RA and in HVC have very different spiking
patterns �37,40,43�. RA neurons that project to motor areas
spike reliably with precise timings relative to acoustic fea-
tures of the motif �37,43�. An RA neuron bursts about ten
times during a motif. Different combinations of RA neurons
burst at different times, driving different spike patterns in the
motor neurons to generate varying acoustic features �37,43�.
In contrast, HVC�RA� neurons have ultrasparse spiking pat-
terns �40�. An HVC�RA� neuron bursts only once during a
song motif. The burst typically lasts about 6 ms, emitting
three to seven spikes, and has a precise timing relative to the
motif. Different HVC�RA� neurons burst at different times.
Thus, HVC�RA� neurons burst sequentially and form a se-
quencer that drives different combinations of RA neurons at
different times �40,44,45�. An RA neuron bursts several*djin@phys.psu.edu
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times during the motif since it is driven by different
HVC�RA� neurons that burst at different times. These experi-
ments show that, whereas RA neurons encode moment-to-
moment patterns directly involved in producing the acoustic
features of the song, HVC�RA� neurons encode the sequence
and timing of these features �44,45�. The sequential structure
of zebra finch song is thus reflected in the sparse sequential
bursts of HVC�RA� neurons �40�, which can be thought of as
encoding the song syntax of zebra finch. Since an HVC�RA�
neuron bursts once during the motif, the set of neurons firing
during each syllable is distinctive.

A recent experiment showed that cooling HVC of a zebra
finch during singing slows down the song uniformly in all
time scales, supporting the idea that the sequential firings of
HVC�RA� neurons are generated within HVC �46�. Compu-
tational models �47,48� proposed that such a firing pattern is
produced by spike propagation in a synfire chain network, in
which successive groups of HVC�RA� neurons are chained
by unidirectional excitatory connections �49,50�. Chaining is
the simplest network structure that can generate sparse, se-
quential firing pattern, and has been suggested as a neural
mechanism for sequential order in general �49–55�. The mi-
crocircuit of HVC �36� allows the possibility that HVC�RA�
neurons are organized into a chain network, because
HVC�RA� neurons have excitatory connections with each
other. The inhibitory interneurons are excited by HVC�RA�
neurons, and also send inhibitory connections to HVC�RA�
neurons, providing a local feedback inhibition to HVC�RA�
neurons. Thus, the burst sequence in HVC could be produced
through spike propagation along the excitatory connections
between HVC�RA� neurons and regulated by the feedback
inhibition via the interneurons. Such chain networks could

arise during the development through a simple activity-
driven self-organizing process �56�.

Despite of the insights obtained from the studies of zebra
finch, it remains a mystery how the variability of syllable
sequences in songs of many other species such as Bengalese
finch is produced. The simplicity of zebra finch song makes
it unsuitable for studying song syntax with complex transi-
tion rules.

In this paper, we advance a “branching chain network”
hypothesis of complex song syntax. It is a simple extension
of the synfire chain model of the song sequence generation in
zebra finch. We hypothesize that HVC is the site where the
syntax of birdsong is generated. Each syllable is driven by
spike propagation along a chain network of groups of
HVC�RA� neurons unidirectionally connected through the
excitatory synapses. The spike activity is aided by external
inputs from UVA and/or NIF. The end of one chain is con-
nected to the beginnings of several other chains to form a
branching chain network. The transitions between syllables
are governed by selective propagation of activity to one of
the connected chains at a branching point. The selection is
probabilistic, and is enforced by the mutual inhibition be-
tween the chains mediated by the inhibitory interneurons.
The selection probability can be affected by auditory feed-
back through NIF. A schematic of how HVC�RA� neurons
are connected to encode the syntactical rule of syllable A
transitioning to either syllable B or C is shown in Fig. 3.

A prominent feature of our hypothesis is the winner-take-
all selection of a chain at a branching point for the spikes to
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FIG. 1. Spectrogram �a� and syllable transition diagram �b� of a Bengalese finch song. The syllables �I, A-G� are labeled on top of the
spectrograms. Data courtesy of Alexay Kozhevnikov.
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FIG. 2. Key brain nuclei of the song control system. Major
projections in the motor pathway are indicated. Arrows indicate
directions of projections, which are all excitatory.

C

A

B

A

B

C

FIG. 3. A network of HVC�RA� neurons for generating a proba-
bilistic transition from syllables A to B or C. Each syllable is en-
coded by a chain network. Chain A branches into chains B and C.
HVC�RA� neurons inhibit each other through the interneurons �not
shown�. Spike activity propagates from chain A to either chain B or
C but not both. The selection of B or C is probabilistic.
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propagate. The spike activity must not decay or propagate
simultaneously in more than one chain. A key theoretical
issue is whether this mechanism is robust to noise and can be
realized without delicate tuning of the network parameters.
The issue has been addressed recently by Chang and Jin
using chain networks of simple leaky integrate-and-fire neu-
rons �57�. However, the robustness remains to be demon-
strated when more realistic models of HVC neurons are used.
Another important issue is how the transition probabilities
are controlled. These, along with testable predictions of the
hypothesis, are investigated through numerical simulations
of biologically motivated model of the branching chain net-
works in HVC.

II. METHODS

A. Neuron models

HVC�RA� neurons have been studied in a number of ex-
periments. Extracellular recordings in zebra finch during
singing demonstrated that HVC�RA� neuron emit stereotypi-
cal bursts of three to seven spikes �40�. Intracellular record-
ings that injected currents to the somata of HVC�RA� neu-
rons did not observe such burst activity �32–34�. Some of
these recordings showed that HVC�RA� neurons have strong
spike frequency adaptation �32�, while others did not �33�. A
recent experiment suggests that the adaptation is not promi-
nent �Long, Jin, and Fee, submitted�. Currently, detailed
studies of the ion channels on HVC�RA� neurons are not
available. We therefore construct a minimal model of
HVC�RA� neuron that is consistent with the extracellular and
intracellular recordings, with necessary ion channels com-
monly used in conductance based neuron models �47�.

A key issue in modeling HVC�RA� neuron is the origin of
the stereotyped bursts observed in the extracellular record-
ings. One possibility is that the bursts are generated through
convergent inputs to HVC�RA� neurons from other
HVC�RA� neurons and regulated by feedback inhibition
through the interneurons �48,58�. However, such a network
based mechanism requires fine tuning of the connection
strengths between neurons to achieve the level of stereotypy
of the HVC�RA� bursts observed in the experiments, espe-
cially with noise �Long, Jin, and Fee, submitted�, thus is not
robust �47�.

Another possibility is that HVC�RA� neuron has an intrin-
sic cellular mechanism for burst generation �47�. A minimum
model consistent with the experiments is a two-compartment
model with a dendrite and a soma �47�. The soma has no
bursting property, in agreement with the intracellular record-
ings. The dendrite is capable of generating calcium spike.
When the membrane potential of the dendrite reaches a
threshold, a high threshold Ca++ conductance is activated,
leading to rapid depolarization of the dendrite due to the
Ca++ current. Elevated calcium concentration, in turn, acti-
vates the calcium-dependent K+ current, which leads to re-
polarization of the membrane potential. These nonlinear pro-
cesses produce a stereotypical profile of the dendritic
membrane potential, which drives stereotypical burst of so-
dium spikes in the soma. The two-compartment model
greatly enhances the robustness of burst propagation through

synfire chain networks of HVC�RA� neurons �47�. Calcium
spikes have been observed in mammalian hippocampal and
cortical neurons, as well as cerebellar Purkinje neurons
�59,60�. A recent experiment that coupled intracellular re-
cordings with pharmacological manipulations supports the
existence of calcium spikes in HVC�RA� neurons �Long, Jin,
and Fee, submitted�.

In the previous version of the two-compartment model of
HVC�RA� neuron, a low-threshold potassium �KLT� conduc-
tance was incorporated in the soma to produce strong spike
frequency adaptation and control the burst duration �47�. The
recent experiment �Long, Jin, and Fee, submitted� indicates
that the adaptation is not as strong as previously thought
�32�, and the burst duration is controlled by the calcium
spike. We therefore modified the model and adjusted param-
eters to match these recent observations. Specifically, the so-
matic compartment of the HVC�RA� neuron model contains
a leak conductance and Na+ and delay-rectified K+ conduc-
tances for action potential generation. The dendritic compart-
ment contains a leak conductance and a high threshold Ca++

conductance plus a calcium-activated K+ conductance for
generation of a calcium spike in the dendrite. The two com-
partments are connected Ohmically. A calcium spike in the
dendrite leads to a stereotypical burst of sodium spikes in the
soma. In Fig. 4, we show the properties of the model neuron.
Step current injection to the soma leads to spike response
with the spike frequency proportional to the strength of the
inject current �Figs. 4�a� and 4�b��. Suprathreshold current
injection to the dendrite produces stereotypical calcium spike
regardless of the current strength, leading to stereotypical
somatic spikes �Figs. 4�c� and 4�d��.

The HVC�I� neuron is modeled as a single compartment
neuron that contains Na+ and delay-rectified K+ conductance
for action potential generation, leak conductance, and high
threshold K+ conductance for enhancing fast spike genera-
tion. Under current injection, the interneuron spikes with
high frequency, as shown in Fig. 5. Fast spiking is the hall-
mark of the HVC�I� neurons �32–34�.

The mathematical details of the neuron models are de-
scribed in Appendix.

0.2 nA

0.5 nA

0.8 nA

Soma (Inj)

10ms 50
m
V

0 0.2 0.4 0.6 0.8 1
0
5
10
15

Iext, Soma(nA)

N.
Sp
ike
s

0.4 nA

1 nA

1.6 nA

Dendrite (Inj) Soma

0 0.5 1 1.5 20
1
2
3
4

Iext, Dendrite (nA)

N.
Sp
ike
s

a b

c d
10ms 50

m
V

FIG. 4. Properties of two-compartment HVC�RA� neuron
model. �a� Membrane potentials of the soma with three levels of
step current injections to the soma of 20 ms long. �b� Number of
spikes as a function of the level of the step current. �c� Membrane
potentials of the dendritic compartment �left� and somatic compart-
ment �right� under three levels of current injections at the dendritic
compartment. �d� Number of spikes in the somatic compartment as
a function of the level of the injected step current at the dendritic
compartment.
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B. Network connectivity

Each chain consists of 20 groups of 60 HVC�RA� neu-
rons. There are 1000 HVC�I� neurons. An HVC�RA� neuron
connects to an HVC�I� neuron with a probability 0.05 and an
excitatory synaptic conductance randomly chosen from 0 to
GEImax=0.5 mS /cm2; an HVC�I� neuron connects to an
HVC�RA� neuron with a probability 0.1 and an inhibitory
synaptic conductance randomly chosen from 0 to GIEmax. An
HVC�RA� neuron connects to an HVC�RA� neuron in the
next group, with an excitatory conductance randomly se-
lected from 0 to GEEmax. The connectivity of the network is
shown in Fig. 6. The synaptic connections to the HVC�RA�
neurons are made onto the dendritic compartments.

C. Noise and spontaneous activity

Noisy fluctuations of membrane potentials are induced in
both HVC�RA� and HVC�I� neurons by applying noise spike
trains generated with Poisson process. At each noise spike, a
synaptic conductance randomly selected from 0 to GNoise is
added to either excitatory or inhibitory conductance with a

probability 0.5. An HVC�RA� neuron receives noise spike
trains of frequency 200 Hz and GNoise=0.045 mS /cm2 at the
somatic compartment and noise spike trains of frequency
200 Hz and GNoise=0.035 mS /cm2 at the dendritic compart-
ment. This leads to fluctuations of the membrane potentials
in both compartments with a standard deviation about 3 mV.
An HVC�I� neuron receives a noise spike train of frequency
500 Hz and GNoise=0.45 mS /cm2. This leads to spontaneous
firing of HVC�I� neurons at about 10 Hz. The noisy fluctua-
tions of the membrane potentials of neurons are shown in
Fig. 7.

D. External drive

External inputs to HVC�RA� neurons are modeled as ex-
citatory spikes generated by a Poisson process of frequency
1000 Hz. The synaptic conductance at each spike is ran-
domly selected from 0 to Gext,max, typically 0.05 mS /cm2

unless specified otherwise.

III. RESULTS

To show that our branching chain network can generate
complex variable syllable sequences, we simulated a net-
work consisting of 4800 HVC�RA� neurons and 1000
HVC�I� neurons. The connectivity between HVC�RA� neu-
rons and HVC�I� neurons are as shown in Fig. 6. The inhibi-
tory conductance from an HVC�I� neuron to its connected
HVC�RA� neuron is randomly selected from 0 to GIEmax
=0.4 mS /cm2. The HVC�RA� neurons form four chain net-
works that drive syllables A, B, C, and D, respectively. There
are 20 groups in each chain, and 60 neurons in each group. A
neuron is connected to all neurons in the next group in the
chain, with the conductance randomly selected from 0 to
GEEmax=0.3 mS /cm2. The connections between the chains
are set up such that the syntax of the syllable transitions is as
given in Fig. 8�a�. The syntax is similar to that of a real
Bengalese finch, as shown in Fig. 1, with repeats of syllables
and multiple permitted transitions from a given syllable. Spe-
cifically, syllable A can repeat itself or transition to B; B can
repeat itself or transition to C or D; C transitions to D; D can
transition to either A or C. The connections between the
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FIG. 5. Properties of the HVC�I� �inhibitory� neuron. �a� Mem-
brane potentials of the neuron under three levels of injected step
currents of 100 ms long. The area of the neuron is assumed to be
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injected step current.
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neurons in the next group. An HVC�RA� neuron connects to an
HVC�I� neuron �gray circles� with a probability 0.05; and an
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FIG. 7. Spontaneous activity of an interneuron �a� and an
HVC�RA� neuron �b�.
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chains are set up accordingly. The neurons in the final group
of the chain encoding syllable A �chain A� are connected to
the neurons in the first groups in both chain A and chain B,
reflecting the A to A or A to B transitions allowed by the
syntax; the end of chain B is connected to the first groups of
chains B, C, and D; so on and so forth. This leads to a
branching chain network with the connectivity between the
chains exactly following the transition diagram between the
syllables, as shown in Fig. 8�b�. The connection strength

from a neuron in the last group to those in the first group are
randomly selected from 0 to GEEmax=0.3 mS /cm2.

The spiking dynamics of the network is capable of gener-
ating variable syllable sequences that obey the specified syn-
tax. This is shown in Fig. 8�c�, in which we plot the spike
raster of HVC�RA� neurons in a run of the dynamics. The
neurons are ordered according to the group orders in the
chains. At the beginning of the trial, spontaneous spike
propagation appears in chain C due to the random external
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FIG. 8. The spiking dynamics of a branching chain network generating a variable song syntax. �a� The syntax of the syllable sequences.
The possible transitions between syllables A,B,C,D are indicated with the arrows. �b� The schematics of connectivity of the branching chain
network of HVC�RA� neurons. The inhibitory interneurons are not shown. Each syllable is encoded by a chain network, indicated by the
black circles connected with the black arrows. The end of a chain network is connected �gray arrows� to the beginning of another chain �or
itself� if there is a transition between the corresponding syllables. �c� The spikes of HVC�RA� neurons during one run of the dynamics.
Neurons are ordered according the chains and groups in the chains. The vertical gray lines indicate the start of the dynamics at the branching
points. The generated syllable sequence is on the top. �d� Spikes of the inhibitory interneurons. �e� The population averaged spike rates of
HVC�RA� neurons �lower curve� and the interneurons �upper curve�.
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inputs to the HVC�RA� neurons, which were present from
t=0 ms. At t=50 ms, the neurons in the first group of chain
A are induced to spike by injection of suprathreshold cur-
rents. This induces burst propagation along chain A, produc-
ing syllable A. Spikes of the final group of chain A activates
the first groups of both chain A and B. Spikes weakly and
briefly propagate on both chains �approximately 20 ms�, but
selects chain B for further propagation. After reaching the
end of chain B, spikes briefly propagate on chains B, C, and
D but choose chain B to propagate further. Such brief coac-
tivation followed by selection of a single chain continues,
generating a syllable sequence ABBDCDCDCDABBBCD-
CDCDABCDCDABBBB over a period of 3.2 s. The se-
quence obeys the syllable transition rule.

An HVC�RA� neuron bursts once during spike propaga-
tion in a single chain because of the chain connectivity. In
contrast, HVC�I� neurons spike throughout the entire trial, as
shown in Fig. 8�d�, because HVC�I� neurons are excited by
randomly selected neurons in all chains. The population
spike rate of HVC�I� neurons tends to increase and decrease
during the brief coactivation periods, as shown in the upper
curve in Fig. 8�e�. The increase reflects the simultaneous
activation of several groups in multiple chains. The resulting
increased inhibition reduces the population activity of
HVC�RA� neurons �the lower curve in Fig. 8�e��, which in
turn decreases the HVC�I� activity. After this competing pe-
riod, spike steadily propagates in a single chain.

In our model, a syllable is driven by a chain network in
HVC. It is crucial that a single chain is selected after a tran-
sient period at a branching point, which is accomplished by
mutual inhibition between the chains. The inhibition should
be sufficiently strong for this purpose. However, strong inhi-
bition tends to stop spike propagation altogether, which
should not be allowed either. Strong excitation between
HVC�RA� neurons can counteract the inhibition to sustain
the activity; however, the excitation should not be too strong,
otherwise activity can propagate in multiple chains. This
suggests that the excitation and inhibition strengths should
be in a restricted regime. To show that our mechanism does
not require a delicate tuning of the excitation and inhibition
strengths, we simulated a network consisting of two chain
networks that drive syllables A and B, respectively. The
chains are connected to allow transitions from A to A or B,
and from B to A or B, as shown in Figs. 9�a� and 9�b�. We
systematically varied the excitation strength GEEmax and the
inhibition strength GIEmax. For each pair of parameters, we
simulated the dynamics 40 times, each for 300 ms. The re-
sults are shown in Fig. 9�c�. There are four regimes in the
parameter space. When the excitation is too large, the spike
activity is unstable. When excitation is moderate but still
large compared to the inhibition, spike simultaneously propa-
gates in both chains after the branching point from chain A to
chains A and B. When the excitation is much weaker than the
inhibition, spike propagation is not possible. The working
regime, in which spike propagation selects either chain A or
B after the branching point is between the regimes for simul-
taneous propagation and the random activity. The regime is
quite large, indicating that the winner-take-all mechanism is
robust. The external inputs to the HVC�RA� neurons are im-
portant for extending the working regime. Without it, the

working regime is reduced by approximately 50%. The ex-
ternal inputs helps to sustain spike propagation when the
inhibition is strong and the excitation is weak �57�.

We also investigated spiking profiles of individual neu-
rons during the multiple runs. In Fig. 9�d�, we plot spikes of
eight selected HVC�RA� neurons and two HVC�I� neurons
over five runs. HVC�RA� neurons in the first few groups of
the chains spike during both syllables A and B. Other
HVC�RA� neurons burst once at precise times during either
syllable A or B, but not both. The interneurons spike broadly
during both syllables. Although the spikes of HVC�I� neu-
rons are not as sparse as HVC�RA� neurons, their timings
have some consistency from run to run because an HVC�I�
neuron is connected to a fixed set of HVC�RA� neurons and
is most active when these HVC�RA� neurons burst. These
firing patterns are very similar to those observed in zebra
finch during singing �40�, except that HVC�RA� neurons in
the first few groups can spike during several different syl-
lables. The bursts of individual neurons, especially those
close to branching points, are not as consistent as in the case
of zebra finch. This is because the inhibition is strong and the
inhibitory neurons are noisy.

To characterize the noisiness of the spikes of HVC�RA�
neurons, we computed the unreliability index for each neu-
ron. We computed the probability p of the neuron spiking
when the activity propagates to the group that the neuron
belongs to. The neuron is most reliable if it spikes or is silent
every time, most unreliable if the probability is 0.5. The
unreliability can be characterized by the entropy, defined as
−p log2 p− �1− p�log2�1− p�. The unreliability index is de-
fined as the entropy normalized by the entropy when p=0.5.
The index is 0 if p=1 or p=0; is 1 if p=0.5. We computed
the unreliability index of all HVC�RA� neurons for each pa-
rameter pair in the working regime. The averaged index is
roughly a decreasing function of the ratio of the excitation
and inhibition, as shown in Fig. 9�e�. When the excitation is
weak compared to the inhibition, the noisy spiking of the
inhibitory neurons can induce noisy responses of HVC�RA�
neurons, and the averaged index is high, reaching 0.3 in the
worse case �this corresponds to p=0.95 or p=0.05�. When
the excitation is sufficiently large compared to the inhibition,
HVC�RA� neurons spike more reliably, and the index is
around 0.05 �corresponding p=0.994 or p=0.006�. The noise
in the external inputs also contributes to these run-to-run
fluctuations.

For each parameter pair in the working regime, we also
computed the probability of selecting chain A after activity
reaches the end of chain A. The probability ranges from 0.3
to 0.9. When the excitation is low compared to the inhibition,
the probability is mostly larger than 0.5. This reflects the bias
of inhibition to chain B introduced when the connections
between HVC�RA� neurons and HVC�I� neurons are ran-
domly set. Increasing the excitation reduces the bias.

The transition probability can be changed by biasing the
excitatory connection strengths between the chains or the
external inputs to the chains. We systematically varied the
maximum excitatory conductance GEEmaxA of the connec-
tions from the end to the beginning of chain A, while keep-
ing GEEmaxB of the connections from the end of chain A to the
beginning of chain B constant �0.3 mS /cm2� �Fig. 10�a��.
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The probability of selecting chain A as a function of the ratio
between GEEmaxA and GEEmaxB is a sigmoidal. It is essentially
0 when the ratio is 0.9, and increases to 1 when the ratio is
1.1. The probability is thus quite sensitive to the changes of
the connection strength between the chains. We also system-
atically varied the level of external inputs by injecting a con-
stant bias excitatory conductance Gb to HVC�RA� neurons in
chain A or in chain B �Fig. 10�b��. When Gb is applied to
chain A, the probability of selecting chain A steadily in-
creases with Gb. When Gb is applied to chain B, the prob-
ability steadily decreases. Thus, bias in the external levels to
the chains substantially changes the transition probabilities.

The transition dynamics between the chains is Markovian.
In other words, the transition probabilities from the current
chain to others do not depend on the prior dynamics. To

demonstrate this point, we simulated spike propagations in
the branching chain network shown in Fig. 8 and generated
40 syllable sequences with 99 syllables on average. We com-
puted the probabilities of transitions from a syllable to oth-
ers. For example, from syllable B, the transition probabilities
to syllables A, B, C, and D are 0, 0.495, 0.408, and 0.097,
respectively. We then tested whether this transition probabil-
ity depends on the previous state of the network. For ex-
ample, the transition probabilities from syllable B when it is
preceded by syllable A is 0, 0.485, 0.422, 0.093. The �2 test
of goodness of fit between these two sets of probabilities,
excluding the transition with 0 probability, returned P=5
�10−4, indicating that syllable A had no significant effect
on the transition probabilities from syllable B. Similarly, �2

tests on the effects of preceding syllables to the transition
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probabilities from all syllables showed no significance
�P�0.05�. One can also test the Markovian property by
studying the probability distributions of subsequences, most
conveniently, the frequencies of repeats of a single syllable.
For example, the frequency N�n� of observing n consecutive
B’s is plotted in Fig. 11. If the transitions are Markovian, the
distribution is described by an exponential function, i.e.,
N�n�=N0�pBB�n. Here N0 is an adjustable parameter, and
pBB=0.495 is the observed transition probability from B to
B. The predicted curved fits well the observed distribution,
as shown in Fig. 11 �P�0.02, �2 test using 1 to 6 repeats�.

It is possible that several chains produce the same syllable
because HVC to RA connections are learned �44,61,62�, and
different chains could have very similar connections to the
same set of RA neurons �63�. If this is the case, the syllable
sequence cannot be described by Markovian model even
though the transition dynamics between the chains is Mar-

kovian. This effect is shown in Fig. 12. Here, the chain cor-
responding to D in Fig. 8 now drives syllable C, producing a
modified syllable transition rule shown in Fig. 12�a�. There
are two chains driving the same syllable C. This many-to-one
mapping produces a non-Markovian transition between the
syllables, as shown in Fig. 12�b�. The repeats distribution of
syllable C is far from the exponential distribution. The dis-
tribution peaks at n=2 because the transition between the
two chains driving syllable C is pronounced.

IV. DISCUSSION

The song syntax of songbird species such as Bengalese
finch contains both restrictions and randomness. A syllable
can be followed by one syllable in a restricted set, and the
choice is stochastic �13�. In our model, syllables are driven
by chain networks of RA-projecting neurons in HVC. The
permitted transitions between the syllables are encoded in
the branching connection patterns between the chains, and
the probabilistic choices of the syllables are enforced by the
winner-take-all mechanism mediated by feedback inhibition
through the inhibitory interneurons and aided by noise in the
neural activity. The transition probabilities are controlled by
connection strengths at the branching points as well as the
external inputs. Our computational analysis demonstrates
that this mechanism is robust and does not require a delicate
tuning of the network parameters.

The idea that a syllable is driven by spike propagation in
a chain network of HVC�RA� neurons is suggested by recent
experimental and computational works on zebra finch, whose
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songs consist of fixed sequences of syllables �10�. An
HVC�RA� neuron bursts only once at a precise time point
during a syllable �40�, indicating that distinctive groups of
HVC�RA� neurons drive different syllables, and HVC�RA�
neurons are activated successively �40,44�. Experiments that
cooled HVC during singing further supports that the timings
of HVC�RA� bursts are generated within HVC �46�. These
observations can be explained by spike propagations on
chain networks of HVC�RA� neurons �47,48�. It remains to
be seen whether these results in zebra finch can be extended
to other species with variable songs, as required in our
model.

Inhibition is crucial in our mechanism. Strong inhibition
is required to prevent simultaneous propagations of spikes in
multiple chains. Random connections between HVC�RA�
neurons and HVC�I� neurons provide mutual inhibition
among HVC�RA� neurons. Because an HVC�I� neuron is
connected by HVC�RA� neurons in multiple chains, it can
spike across multiple syllables. Some degree of temporal
precision in the spikes of HVC�I� neurons can exist because
the HVC�I� neurons are driven by HVC�RA� neurons, which
burst with precise timings. These patterns of HVC�I� activity
agree with those observed in extracellular recordings of
HVC�I� neurons during singing in zebra finch �40� and in
Bengalese finch �64�. The microcircuitry of HVC supports
the possibility of mutual inhibition between HVC�RA� neu-
rons via HVC�I� neurons �36�. It will be interesting to see
whether the inhibition to HVC�RA� neurons is particularly
strong in songbird species with variable syllable sequences.
Our model predicts that disrupting inhibition should severely
impair the song, creating abnormal syllables and syntax due
to simultaneous activations of multiple chains. The popula-
tion activity of HVC�I� neurons is transiently elevated at
branching points because of simultaneous activations of sev-
eral chains before the winner-take-all mechanism selects one
chain. Subsequently it decreases since the elevated inhibition
quenches the HVC�RA� activity, then it returns to the normal
level after the winner-take-all competition is complete. Such
transients could be observed in recordings of HVC�I� neu-
rons during singing.

The song control system of songbird is bilaterally orga-
nized �20,23,65�. There are no direct connections between
the HVCs in the two hemispheres �21,23�. Therefore,
HVC�RA� neurons in different hemispheres cannot directly
excite or inhibit each other. Our model requires a strong
lateralization of the control of song syntax. In particular, all
chains encoding syllables in the same set following a syllable
must reside in the same hemisphere so that they can be ac-
tivated through the branching connections and compete
through the feedback inhibition via the HVC�I� neurons. If
all chains are activated by connections from other chains, the
song should be entirely controlled by the HVC in one side.
Hemispherical dominance of the control of complex song
syntax is supported by lesion studies in canary �20,66� and in
Bengalese finch �67�, although there is a possibility that
some of the effects of the laterization could be peripheral in
origin �68,69�. Further experiments are needed to unambigu-
ously address whether the control of complex song syntax
resides in one hemisphere.

Recent cooling �46� and stimulation �70� experiments
suggest that in zebra finch, the song control is lateralized to

one HVC at any given moment, and the control switches
back and forth between the two HVCs over time scales com-
parable to those of syllables. The switch could be through the
feedback from RA to HVC through the brainstem and UVA
�46,65,71,72�. Thus it is quite possible that the syllable-
encoding HVC chains are activated through the feedback
loop rather than through direct activations from other chains.
If so, the two HVCs could control separate parts of the song
syntax. Our model can be easily adapted to use the feedback
loop as the chain activation mechanism. Other parts of our
model, in particular the winner-take-all mechanism of select-
ing one of several activated chains for spikes to propagate,
should remain the same. It will be interesting to see whether
the switching of song control between the two HVCs gener-
alizes to species with complex song syntax.

In our model, HVC�RA� neurons are driven by random
excitatory external inputs. The external inputs enhance the
robustness of the winner-take-all competition of spike propa-
gations among multiple chain networks �57�. The winner-
take-all mechanism requires a strong inhibition to prevent
simultaneous spike propagations in multiple chains. How-
ever, strong inhibition also tends to stop spike propagations
altogether. The external inputs help to prevent such ceasing
of activity. We propose that the external inputs come from
UVA and/or NIF �21,29–31,73�. Although in our model all
chains receive the same amount of external drive, this does
not have to be the case. Biases in the external inputs affect
the transition probabilities at the branching points. NIF is the
major source of auditory input to HVC �25–28�. Distortion
of auditory feedback could thus change the transition prob-
abilities between the syllables online by altering the NIF
input, as observed in experiments on Bengalese finch
�18,64�. Complete removal of auditory input by deafening
leads to emergence of novel syllable transitions in Bengalese
finch �15,16,18�. An explanation is that deafening alters the
NIF inputs to HVC, possibly reducing the biases to the chain
networks and also increasing noise, so that previously sup-
pressed transitions can emerge. Removal of NIF reduces the
song complexity in Bengalese finch �74�. In our model, this
could be due to the reduction of the external inputs and noise
with the NIF removal, which makes weak transitions disap-
pear and syllable sequences stereotyped. The transition prob-
abilities of syllables in Bengalese finch differ in songs di-
rected to female compared to songs undirected �75�. This
might be due to the state dependent changes of auditory in-
puts to HVC, as observed in zebra finch �76�. Detailed mod-
eling and comparison with the experiments are needed to
fully address the questions on how auditory inputs, NIF, and
behavioral states modify complex song syntax.

The transitions between the chain networks in our model
can be described by a Markov model. If each chain drives a
unique syllable type, the resulting song syntax should be
Markovian. However, if multiple chains encode the same
syllable type, the song syntax can be non-Markovian. In-
stead, the syllable sequences should be described by partially
observable Markov model �POMM�, which is a special case
of the hidden Markov model �77�. In POMM, state transi-
tions are Markovian. Each state emits a single symbol, but
multiple states can emit the same symbol. The chains in our
model correspond to the states, and the syllables correspond
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to the symbols. It has been shown that the syntax of Ben-
galese finch songs is not Markovian; rather, the syntax is
better fit with higher order Markov models �although the
statistics were not shown�, in which state transitions are as-
sociated with chunks of syllables, with a syllable possibly
appearing in many different chunks �13�. It remains to be
seen whether the POMM can statistically describe the com-
plex syllable sequences such as those of Bengalese finch.
The many-to-one mapping between the chain networks in
HVC and a syllable type is plausible since the connections
from HVC to RA are learned �44,61,62�, and different sets of
HVC�RA� neurons could develop highly similar connection
patterns to the same set of RA neurons. Indeed, there is evi-
dence that HVC activity can be different during the vocal-
izations of the same syllable types �37,68�. An analogous
many-to-one mapping from different sets of RA neurons to
the same acoustic feature has been shown �43�. Future ex-
periments, perhaps with in vivo recordings of HVC�RA� neu-
rons during singing �40�, could resolve this issue.

It is possible to make the transitions between the chains
non-Markovian by introducing use-dependent biophysical
mechanisms such as synaptic depression, spike frequency
adaptation, and/or facilitation of inhibition. In zebra finch,
the tempo of the motif slows downs as the motif is repeated
�78�, suggesting that some adaptive process is present. It will
be interesting to investigate this possibility further.

We used a two-compartment model with dendrite and
soma for HVC�RA� neurons. The dendrite is capable of gen-
erating calcium spike with a stereotypical voltage profile,
which drives stereotyped burst of sodium spikes in the soma
�Fig. 4�. The model is motivated by the observation that
HVC�RA� neurons in zebra finch emit stereotyped bursts
with three to seven spikes within about 6 ms during singing
�40�. The model attributes the HVC�RA� burst to an intrinsic
cellular mechanism located in the dendrite. Jin et al. have
shown that dendritic spike enhances the stability of burst
propagation in chain networks �47�. The model is supported
by recent intracellular recordings of HVC�RA� neurons
�Long, Jin, and Fee, submitted�. The robustness of the
winner-take-all propagation of spikes in branched chain net-
works does not critically depend on the choice of neuron
model. In a recent theoretical work, Chang and Jin �57� stud-
ied the winner-take-all propagation mechanism using simple
leaky integrate-and-fire neurons and obtained a working pa-
rameter regime that is similar to the one shown in Fig. 9�c�.
The choice of neuron model does introduce some differ-
ences. With the leaky integrate-and-fire neurons, the mecha-
nism requires strong external drive; the working regime does
not exist without the external drive �57�. With the two-
compartment model, the external drive can be absent if the
excitation and inhibition are near the boundary that separates
the working regime from the simultaneous propagation re-
gime, shown in Fig. 9�C�. This difference is due to the en-
hanced robustness of spike propagation in chain networks
with the two-compartment model �47�.

To prevent simultaneous spike propagations in multiple
chains, the feedback back inhibition between HVC�RA� neu-
rons must be fast enough. In our model, we have not explic-
itly introduced spike transmission delays. Nonetheless, the
feedback inhibition is delayed compared to the direct excita-

tion between HVC�RA� neurons because the inhibition is
mediated through HVC�I� neurons. Synchronous spikes in
one group of HVC�RA� neurons in a chain evoke spike re-
sponses in the connected HVC�I� neurons with latencies
ranging from 0.5 to 3.5 ms �mean 1.5 ms, standard deviation
0.8 ms�. Paired recordings in HVC slices from zebra finch
have shown that HVC�I� neurons mediate fast feedback in-
hibition �36�. The average response time of an HVC�I� neu-
ron to a single spike from an HVC�RA� neuron was 1.4 ms,
as measured by the time for the membrane potential to reach
25% of the peak response value �36�. An HVC�RA� neuron
responded to a single spike from an HVC�I� neuron with an
averaged response time of 1.7 ms �36�. Thus, the latency of
feedback inhibition between HVC�RA� neurons is about 3.1
ms. On surface, the latency is beyond the range in our model.
However, two factors must be considered. First, the absolute
latency is not important. What matters is how much the feed-
back inhibition is delayed relative to the direct excitation.
Recordings in HVC�RA� neuron pairs found that the aver-
aged response time is 4 ms �36�. Therefore, the feedback
inhibition is not much delayed relative to the excitation. Sec-
ond, the response times were measured in the experiments
with single spike inputs �36�. If measured with multiple, syn-
chronous spikes, as in our model, the response times should
be shorter. We therefore believe that the latency of feedback
inhibition in our model is consistent with the experimental
data. We also tested whether our model works when the av-
eraged delay of inhibition is increased to 3 ms by reducing
the strengths of the excitatory connections from HVC�RA�
neurons to HVC�I� neurons. It does, in a more restricted
parameter regime, as long as the overall inhibition strength is
maintained by increasing the number of interneurons and the
strengths of the inhibitory synapses. Increasing the external
drive also helps. Hence, our model can handle increased de-
lay of feedback inhibition. An interesting theoretical question
is what new phenomena might emerge with increased delay
of feedback inhibition. Chang and Jin observed that the delay
can lead to synchronous spiking of nearby groups in the
chain networks, creating functional “supergroups,” but the
winner-take-all propagation does not breakdown �57�. In fu-
ture this issue should be explored systematically, especially
with the two-compartment model of HVC�RA� neurons.

There are alternative mechanisms of generating complex
birdsong. Katahira et al. proposed a model in which groups
of inhibitory interneurons in HVC form branching chain net-
works �63�. Each group of HVC�I� neurons is mutually con-
nected with a group of HVC�RA� neurons. Sequential activ-
ity in HVC�RA� groups is generated by periodic burst inputs
from UVA to HVC�RA� neurons and disinhibition of the
HVC�RA� groups, a mechanism first suggested by Drew and
Abbott �79�. A winner-take-all competition at the branching
points is introduced through mutual inhibition. As in our
model, the transition dynamics between the chains is Mar-
kovian, and non-Markovian syllable sequences is induced
using the many-to-one mapping between HVC�RA� neurons
and the syllables. In this model, HVC�I� neurons sequentially
pause and elevate activity once during the sequence genera-
tion in one chain, and is tonically active otherwise. Such
activity patterns are not observed in recordings of HVC�I�
neurons in both zebra finch �37,40� and Bengalese finch �64�.
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It is also unclear whether this model can produce bursts of
HVC�RA� neurons with millisecond precision relative to the
syllables as observed in zebra finch �40�.

It is possible that the stochastic decision of sequencing
syllables is done outside of HVC. NIF is proposed as the site
of syntax control �74�. LMAN �the lateral magnocellular
nucleus of the anterior nidopallium�, the output of a basal
ganglia-forebran circuit in songbirds, has been shown to in-
fluence syllable sequence variability in juvenile zebra finch
�80,81�. However, recent experiments have demonstrated
that LMAN has little effect on syllable sequencing in adult
Bengalese finch �82�. Another possibility is MMAN �the me-
dial magnocellular nucleus of the anterior neostriatum�,
which projects to HVC �83�. To be definitive about syntax
control, experiments must be careful in distinguishing the
site where the stochastic decisions of selecting syllables are
made from sites that simply provide supporting signals.

The songs of songbird species are diverse �84�. Our model
of controlling variable syllable sequences, which emphasizes
the role of HVC, is constructed by extrapolating from the
experimental and modeling works on the zebra finch
�40,44,47,48�. It is most likely that the model applies to spe-
cies such as the Bengalese finch, which is closely related to
the zebra finch �13�. Other songbird species could have dif-
ferent or additional mechanisms of controlling syllable se-
quences. For example, the canary can sing trills with syllable
repetition rate greater than 30 syllables per second, during
which there is no inspiration �69,85�. The number of syllable
repetition in such a trill is limited by the oxygen demand
�69�. The roles of physical, metabolic and other constraints
on song production should be considered in future models of
variable birdsongs.

In conclusion, we have shown that variable syllable se-
quences can be generated within HVC through competitive
spike propagations in chain networks of HVC�RA� neurons
connected into branching chain pattern. The feedback inhibi-
tion provided by HVC�I� neurons is critical in this process.
Our model predicts that syllable sequences can be statisti-
cally described with partially observable Markov model.
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APPENDIX

1. Two-compartment model of HVC(RA) neuron

The membrane potentials Vs�t� of the soma obeys the fol-
lowing equation:

CmAs
dVs�t�

dt
= As�Is,L + Is,Na + Is,Kdr + Is,exc + Is,inh + Is,ext�

+
�Vd − Vs�

Rc
�A1�

Cm=1 �F /cm2 is the membrane capacitance; As
=5000 �m2 is the area of the somatic compartment;
Is,L=−GL�Vs−EL� is the leak current, with leak conductance
GL=0.1 mS /cm2 and reversal potential EL=−80 mV;
Is,Na=−Gs,Nam�

3 h�Vs−ENa� is the Na+ current, with
conductance Gs,Na=60 mS /cm2, reversal potential ENa

=55 mS /cm2, Na+ activation function m��V�=1 / �1
+exp�−�Vs+30� /9.5�� and gating variables h; Is,Kdr
=−Gs,Kdrn

4�Vs−EK� is the delay-rectified K+ current,
with conductance GKdr=8 mS /cm2, reversal potential
EK=−90 mV, and gating variable n; Is,exc=−gs,exc�t�Vs is the
excitatory synaptic current, where gs,exc�t� is the total excita-
tory synaptic conductance; Is,inh=−gs,inh�t��Vs−EI� is the in-
hibitory synaptic current, where gs,inh�t� is the total inhibitory
synaptic conductance, and EI=−80 mV is the reversal po-
tential; and finally, Is,ext is the external current; Rc=55 M�
is the coupling resistance between the two compartments.

The synaptic conductance follows a kick-and-decay kinet-
ics:

gs,exc;s,inh → gs,exc;s,inh + G �A2�

when a spike arrives at an excitatory or inhibitory synapse
with conductance G, and

�
dgs,exc;s,inh

dt
= − gs,exc;s,inh �A3�

in between spikes. The synaptic time constant � for both
excitatory and inhibitory synapses is set to 5 ms.

The gating variables h, n follow the equation

�x
dx

dt
= x� − x , �A4�

where x=h ,n. The voltage dependences of the gating
variables are h�=1 / �1+exp��Vs+45� /7��; �h=0.1+0.75 / �1
+exp��Vs+40.5� /6��; n�=1 / �1+exp�−�Vs+35� /10�� �n=0.1
+0.5 / �1+exp��Vs+27� /15��

The equation for the membrane potential Vd�t� of the den-
dritic compartment is

CmAd
dVd�t�

dt
= Ad�Id,L + Id,Ca + Id,CaK + Id,exc + Id,inh + Id,ext�

+
�Vs − Vd�

Rc
, �A5�

where Ad=10000 �m2 is the area of the dendritic compart-
ment; Id,L=−Gd,L�Vd−EL� is the leak current, with leak
conductance Gd,L=0.1 mS /cm2 and reversal potential EL=
−80 mV; Id,Ca=−GCar

2�Vd−ECa� is the high threshold Ca++

current, with conductance GCa=55 mS /cm2, reversal poten-
tial ECa=120 mV, and gating variable r; Id,CaK=−GCaKc / �1
+6 / �Ca���Vd−EK� is the calcium-dependent K+ current, with
conductance GCaK=150 mS /cm2, gating variable c, calcium
concentration �Ca�, and reversal potential EK=−90 mV;
Id,exc and Id,inh are the excitatory and inhibitory synaptic cur-
rents, whose dynamics is the same as in the somatic model;
and finally, Iext is the external current to the dendritic com-
partment.
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The gating variables r, c follow Eq. �4�, with r�=1 /
�1+exp�−�Vd+5� /10��; �r=1; c�=1 / �1+exp�−�Vd−10� /7��,
�c=10. The calcium concentration obeys the following equa-
tion:

d�Ca�
dt

= 0.1Id,Ca − 0.02�Ca� . �A6�

2. Single compartment model of HVC(I) neuron

The membrane potential V�t� of the inhibitory neuron fol-
lows:

Cm
dV�t�

dt
= IL + INa + IKdr + IKHT + Iexc + Iinh + Iext,

�A7�

where Cm=1 �F /cm2 is the membrane capacitance;
IL=−GL�V−EL� is the leak current, with leak conductance
GL=0.1 mS /cm2 and reversal potential EL=−65 mV;
INa=−GNam

3h�V−ENa� is the Na+ current, with conductance
GNa=100 mS /cm2, reversal potential ENa=55 mS /cm2, and
gating variables m, h; IKdr=−GKdrn

4�V−EK� is the delay-
rectified K+ current, with conductance GKdr=20 mS /cm2,
reversal potential EK=−80 mV, and gating variable n;
IKHT=−GKHTw�V−EK� is the high threshold K+ current, with

conductance GKHT=500 mS /cm2 and gating variable w;
Is,exc=−gexc�t�V is the excitatory synaptic current, where
gexc�t� is the total excitatory synaptic conductance;
Iinh=−ginh�t��Vs−EI� is the inhibitory synaptic current, where
ginh�t� is the total inhibitory synaptic conductance, and
EI=−75 mV is the reversal potential; and finally, Iext is the
external current. The dynamics of the excitatory and inhibi-
tory conductance is the same as in the single compartment
model of HVC�RA� neuron, except that the time constant of
the excitatory conductance �exc is set to 2 ms.

The gating variables m, h, n are governed by the follow-
ing equation:

dx

dt
= 	x�1 − x� − 
xx , �A8�

where x=m ,h ,n. The voltage dependences of the
gating variables are 	m= �V+22� / �1−exp�−�V+22� /10��;

m=40 exp�−�V+47� /18�; 	h=0.7 exp�−�V+34� /2�; 
h
=10 / �1+exp�−�V+4� /10�� 	n=0.15�V+15� / �1−exp�−�V
+15� /10��; 
n=0.2 exp�−�V+25� /80�. The gating variable w
follows:

�w
dw

dt
= w� − w , �A9�

where w�=1 / �1+exp�−V /5�� and �w=1.
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